Approximate optimal control by inverse CLF approach
نویسندگان
چکیده
منابع مشابه
Approximate MaxEnt Inverse Optimal Control
Maximum entropy inverse optimal control (MaxEnt IOC) is an effective means of discovering the underlying cost function of demonstrated agent’s activity. To enable inference in large state spaces, we introduce an approximate MaxEnt IOC procedure to address the fundamental computational bottleneck stemming from calculating the partition function via dynamic programming. Approximate MaxEnt IOC is ...
متن کاملPassivity Analysis of Discrete Inverse Optimal Control Based on Control Lyapunov Functions CLF
In this paper, we present the analysis to demonstrate that the inverse optimal control, based on a CLF, is passive. In order to do so, a storage function and a supply rate are established using the construction of such control and the properties of passive systems; these functions allow to state that this inverse optimal control is indeed passive.
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملNonlinear control for a diesel engine: A CLF-based approach
In this paper, we propose a control Lyapunov function based on a nonlinear controller for a turbocharged diesel engine. A model-based approach is used which predicts the experimentally observed engine performance for a biodiesel. The basic idea is to develop an inverse optimal control and to employ a Lyapunov function in order to achieve good performances. The obtained controller gain guarantee...
متن کاملInverse Optimal Control
In Reinforcement Learning, an agent learns a policy that maximizes a given reward function. However, providing a reward function for a given learning task is often non trivial. Inverse Reinforcement Learning, which is sometimes also called Inverse Optimal Control, addresses this problem by learning the reward function from expert demonstrations. The aim of this paper is to give a brief introduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2015
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2015.09.199